Mixture interactions in moth olfactory physiology: examining the effects of odorant mixture, concentration, distal stimulation, and antennal nerve transection on sensillar responses.

نویسندگان

  • N K Hillier
  • N J Vickers
چکیده

The insect olfactory system is challenged to decipher valid signals from among an assortment of chemical cues present in the airborne environment. In the moth, Heliothis virescens, males rely upon detection and discrimination of a unique blend of components in the female sex pheromone to locate mates. The effect of variable odor mixtures was used to examine physiological responses from neurons within sensilla on the moth antenna sensitive to female sex pheromone components. Increasing concentrations of heliothine sex pheromone components applied in concert with the cognate stimulus for each neuronal type resulted in mixture suppression of activity, except for one odorant combination where mixture enhancement was apparent. Olfactory receptor neuron (ORN) responses were compared between moths with intact and transected antennal nerves to determine whether specific instances of suppression might be influenced by central mechanisms. Type A sensilla showed little variation in response between transected and intact preparations; however, recordings from type B sensilla with transected antennal nerves exhibited reduced mixture suppression. Testing by parallel stimulation of distal antennal segments while recording and stimulating proximal segments dismissed the possibility of interneuronal or ephaptic effects upon sensillar responses. The results indicate that increasing concentrations of "noncognate" odorants in an odor mixture or antennal nerve transection can produce variation in the intensity and temporal dynamics of physiological recordings from H. virescens ORNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth

Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host...

متن کامل

Postsynaptic Odorant Concentration Dependent Inhibition Controls Temporal Properties of Spike Responses of Projection Neurons in the Moth Antennal Lobe

Although odorant concentration-response characteristics of olfactory neurons have been widely investigated in a variety of animal species, the effect of odorant concentration on neural processing at circuit level is still poorly understood. Using calcium imaging in the silkmoth (Bombyx mori) pheromone processing circuit of the antennal lobe (AL), we studied the effect of odorant concentration o...

متن کامل

Ca Stabilizes the Membrane Potential of Moth Olfactory Receptor Neurons at Rest and Is Essential for Their Fast Repolarization

The role of Ca in insect olfactory transduction was studied in the moth Spodoptera littoralis. Single sensillum recordings were made to investigate in vivo the role of sensillar Ca on the electrophysiological properties of sex pheromone responsive olfactory receptor neurons (ORNs). Lowering the sensillar Ca concentration to 2 · 10 M increased ORN spontaneous firing activity and induced long bur...

متن کامل

Ca2+ stabilizes the membrane potential of moth olfactory receptor neurons at rest and is essential for their fast repolarization.

The role of Ca(2+) in insect olfactory transduction was studied in the moth Spodoptera littoralis. Single sensillum recordings were made to investigate in vivo the role of sensillar Ca(2+) on the electrophysiological properties of sex pheromone responsive olfactory receptor neurons (ORNs). Lowering the sensillar Ca(2+) concentration to 2 x 10(-8) M increased ORN spontaneous firing activity and ...

متن کامل

Learned Odor Discrimination in Drosophila without Combinatorial Odor Maps in the Antennal Lobe

A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical senses

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2011